Special lecture series of Environment Energy Engineering

Environmental problems can be likened to social dilemma games． Prof．TANIMOTO，Jun

Urban Mutually－interpenetrative view over wide spatial－scales

Human

都市境界層 $\infty \longleftarrow \quad 10^{6} 10^{5} \quad 10^{4}$長さスケール［m］

To elaborate the Human－Environment－Social System，it＇s important a concept of ＂Simultaneous＂or＂Bridging to various scales＂．

Two physical systems having neighboring special scales are mutually connected mutually connected conditions．

Small scale \leftarrow Interaction \longrightarrow Large scale

Urban scale

What is the Game Theory ?

Game theory is a study of strategic decision making. More formally, it is "the study of mathematical models of conflict and cooperation between intelligent rational decisionmakers."

John von Neumann \& Oskar Morgenstern; Theory of games and economic behavior, 1944.

Game theory has been widely recognized as an important tool in many fields; economics, political science, psychology, as well as biology, information science and even statistical physics. Eight gametheorists, including John Nash have won the Nobel Memorial Prize in Economic Sciences, and John Maynard Smith was awarded the Crafoord Prize for his application of game theory to biology.

Zero-sum (Constant-sum) games

(Japanese) Chess, Go. Minimax theorem (von Neumann); For every twoperson, zero-sum game with finitely many strategies, there exists a value V and a mixed strategy for each player, such that (a) Given player 2's strategy, the best payoff possible for player 1 is V, and (b) Given player 1's strategy, the best payoff possible for player 2 is -V .

Non zero-sum (Non constant-sum) games

2 by 2 game			$\begin{gathered} \text { Player } 2 \\ \text { chooses Left } \end{gathered}$	$\begin{gathered} \text { Player 2 } \\ \text { chooses Right } \end{gathered}$
Agent1		$\begin{gathered} \text { Payer } 1 \\ \text { chooses } U_{p} \end{gathered}$	4,3	-1, -1
		Player 1 chooses Down	0, 0	3,4
		Nomal fom or	ofa 2	gy g
	Agent2 Agent1	Cooperation (C)	Defection (D)	
	Cooperation (C)	R, R	S, T	
	Defection (D)	T, S	P, P	

Dynamics in nonlinear systems

$$
\frac{d \mathbf{x}}{d t}=\dot{\mathbf{x}}=\mathbf{f}^{- \text {Nonlinear equation }}(\mathbf{x})
$$

A question, which seems crucially important to see basic feature of the system, is whether the system has steady states (equilibriums) or not.

If so, how are those?
If the answer for this question can be drawn through analytical way, that's much better than any numerical approaches.

Analytical approach concerning equilibrium (steadystate) for Linear systems
$d \mathbf{x}$ $=\dot{\mathbf{x}}=\mathbf{A x}$
$d t$
For simplicity, we disregarded impacts resulting from boundary conditions, which makes sure only to be concerned on the system body.

$$
\frac{d \mathbf{x}}{d t}=\mathbf{A} \mathbf{x} \Leftrightarrow \frac{1}{\mathbf{x}} d \mathbf{x}=\mathbf{A} d t \Leftrightarrow \mathbf{x}=\exp [\mathbf{A} t]+\mathbf{c}
$$

Equilibrium \Leftrightarrow Steady-state In this case,

Equilibrium \Leftrightarrow Steady-state $\Leftrightarrow \frac{d \mathbf{x}}{d t}=\mathbf{0} \Leftrightarrow \dot{\mathbf{x}}=\mathbf{0}$
Suppose $t \rightarrow \infty$.
Only when $\quad \mathbf{x}(t)=\exp [\mathbf{A} t] \rightarrow \mathbf{0}$,
this system has Stable Equilibrium (steady-state).

Scalar space

If $a<0$ then $\exp [a t] \rightarrow 0$.

Vector-Matrix space
If all eigen values of \mathbf{A} (there are n eigen values if \mathbf{A} is defined as n square matrix) are negative, $\exp [\mathbf{A} t] \rightarrow \mathbf{0}$.

Thus, what we should investigate is whether signs of all eigen values of \mathbf{A} are + or not.

Equilibrium

$\lambda_{1}, \lambda_{2}<0$

Eigen values of \mathbf{A}

$$
\frac{d \mathbf{x}}{d t}=\dot{\mathbf{x}}=\mathbf{A} \mathbf{x} \quad \text { Time-continuous system }
$$ Time discretization by Forward FDM

$$
\begin{aligned}
\mathbf{x}_{\mathbf{k}+1} & -\mathbf{x}_{\mathbf{k}}=\Delta t \cdot \mathbf{A} \mathbf{x}_{\mathbf{k}} \\
\Leftrightarrow & \mathbf{x}_{\mathbf{k}+\mathbf{1}}=(\Delta t \cdot \mathbf{A}+\mathbf{E}) \mathbf{x}_{\mathbf{k}} \quad \text { Linear mapping }
\end{aligned}
$$

Here, let us remind the Stability condition of Transition Matrix; \mathbf{T} in System-state Equation.
The necessary and sufficient condition for convergence is;

$$
\mid \operatorname{Max}[\operatorname{eigen}[\mathbf{T}] \mid \leq 1
$$

$$
\mathbf{x}_{\mathbf{k}+\mathbf{1}}=\frac{(\Delta t \cdot \mathbf{A}+\mathbf{E})}{\mathbf{T}} \mathbf{x}_{\mathbf{k}}
$$

Now, let us assume that the system instinctively stable; e.g.;

$$
\operatorname{Max}[\operatorname{eigen}[\mathbf{A}]] \leq 0
$$

we know; eigen $[\mathbf{E}]=1$.
It is worthwhile to note that even though an instinctive system is stable, its mapping system may be unstable, because the following situation might happen;

$$
\operatorname{Max}[\operatorname{eigen}[\mathbf{T}]]<-1
$$

It is remarkably amazing that a mapping operation by time-Forward FDM may cause unstable (numerical divergence) even though the system instinctively has stability.

Let us take a look when time-Backward FDM is applied.

$$
\begin{aligned}
& \frac{d \mathbf{x}}{d t}=\dot{\mathbf{x}}=\mathbf{A x} \\
& \mathbf{x}_{\mathbf{k}+1}-\mathbf{x}_{\mathbf{k}}=\Delta t \cdot \mathbf{A} \mathbf{x}_{\mathbf{k}+1} \\
& \Leftrightarrow \mathbf{x}_{\mathbf{k}+1}=[1-\Delta t \cdot \mathbf{A}]^{-1} \mathbf{x}_{\mathbf{k}}=\mathbf{T x}_{\mathbf{k}}
\end{aligned}
$$

If an instinctive system is stable, its mapping system is always stable, because;

$$
0<\operatorname{Max}[\operatorname{eigen}[\mathbf{T}]]<1 .
$$

It is also notable that a mapping operation by time-Backward FDM is always consistent with the system instinctive stability.
Thus, if a system is instinctively stable, its mapping by Backward FDM is stable as well.

Analytical approach concerning equilibrium (steadystate) for Nonlinear systems

Pseudo (quasi)-linearization approach should be applied.

$$
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})
$$

Let us take the Taylor development of nonlinear function f around an equilibrium $\mathbf{x}=\mathbf{x}^{*}$.

$$
\mathbf{f}(\mathbf{x})=\mathbf{f}^{\prime}\left(\mathbf{x}^{*}\right)\left(\mathbf{x}-\mathbf{x}^{*}\right)=\frac{\mathbf{f}^{\prime}\left(\mathbf{x}^{*}\right) \mathbf{x}-\mathbf{f}^{\prime}\left(\mathbf{x}^{*}\right) \mathbf{x}^{*}}{\text { Matrix }}
$$

Now, nonlinear function f has been approximated by a linear function like;

$\underline{\mathbf{A}} \underline{\mathbf{x}}+\underline{\text { Constant }}$.

To the end, we can say that;
whether the Equilibrium, $\mathbf{x}=\mathbf{x}^{*}$, of $\dot{\mathbf{X}}=\mathbf{f}(\mathbf{X})$ can be evaluated by eigen values of;
$\left|\mathbf{f}^{\prime}\left(\mathbf{x}^{*}\right)=\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{*}}=\left[\begin{array}{ccc}\frac{\partial f_{1}(\mathbf{x})}{\partial x_{1}} & \cdots & \frac{\partial f_{1}(\mathbf{x})}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{n}(\mathbf{x})}{\partial x_{1}} & \cdots & \frac{\partial f_{n}(\mathbf{x})}{\partial x_{n}}\end{array}\right]_{\mathbf{x}=\mathbf{x}^{*}}$

$$
\begin{aligned}
& \mathbf{f}(\mathbf{x})=\mathbf{f}\left(\mathbf{x}^{*}\right)+\mathbf{f}^{\prime}\left(\mathbf{x}^{*}\right)\left(\mathbf{x}-\mathbf{x}^{*}\right)+\frac{\mathbf{f}^{\prime \prime}\left(\mathbf{x}^{*}\right)}{2!}\left(\mathbf{x}-\mathbf{x}^{*}\right)^{2}+\cdots \\
& \Leftrightarrow \mathbf{f}(\mathbf{x}) \cong \mathbf{f}\left(\mathbf{x}^{*}\right)+\mathbf{f}^{\prime}\left(\mathbf{x}^{*}\right)\left(\mathbf{x}-\mathbf{x}^{*}\right) \\
& =0 \text {; because of the definition of equilibrium } \\
& \mathbf{f}(\mathbf{x})=\mathbf{f}^{\prime}\left(\mathbf{x}^{*}\right)\left(\mathbf{x}-\mathbf{x}^{*}\right)
\end{aligned}
$$

Thus,
if all eigen values of Jacobi Matrix are negative, the equilibrium $\mathbf{x}=\mathbf{x}^{*}$ is stable sink point.
if all eigen values of Jacobi Matrix are positive, the equilibrium $\mathbf{x}=\mathbf{x}^{*}$ is unstable source point.

If both negative and positive values are co-exist, the equilibrium $\mathbf{x}=\mathbf{x}^{*}$ is unstable saddle point.

Application; Analytical approach concerning equilibrium (steady-state) for Nonlinear systems

2-player 2-strategy game (2 by 2 game)

Class	Dilemma?	GID	RAD
Prisoner's Dilemma; PD	Yes	Yes	Yes
Chicken (Snow Drift; Hawk-Dove)	Yes	Yes	No
Stag Hunt; SH	Yes	No	Yes
Trivial	No	No	No
Basic Assumption			
- Infinite population.			
- \quadOne-shot game; well-mixed situation (with neither social viscosity nor assortment among agents).			

Prisoner's Dilemma

Agent2	Cooperation	Defection (D)
Agent1		

$R ; \underline{R}$ eward, $T ; \underline{\text { Iemptation, }} S ; \underline{S} u c k e r, P ; \underline{P}$ unishment

Prisoner's Dilemma

	C	D
C	R, R	S, T
D	T, S	P, P

$R ;$ Reward, $T ;$ Temptation
S; Sucker, P; Punishment
$2 R(=8)>T+S(=6)>2 P(=4)$

Gamble-Intending Dilemma (GID); $D_{g}=T-R=7-5>0$

Prisoner's Dilemma

	C	D
C	R	S
D	T	P

$R ;$ Reward, $T ;$ Temptation
S; Sucker, P;Punishment
$2 R(=8)>T+S(=6)>2 P(=4)$

Agent2	Cooperation	(C)
Agent1		

Gamble-Intending Dilemma (GID); $D_{g}=T-R=7-5>0$
Risk-Averting Dilemma (RAD);
$D_{r}=P-S=3-1>0$

Prisoner's Dilemma

Chicken/ Hawk-Dove Game (Maynard Smith (1982)) / Snowdrift Game

Player

$D_{g}>0$
Equal Pareto Optimum

Pareto Optimum

Most preferable for Player 1
T
 $P<S<R<T \quad$ Player 1

Chicken

	C	D
C	R	S
D	T	P

R; Reward, T; Temptation
S; Sucker, P; Punishment
$2 R(=8)>T+S(=6)>2 P(=4)$

Agent
Agent 1
Cooperation
(C)

Defection
(D)

worst
Gamble-Intending Dilemma (GID); $D_{g}=T-R=7-5>0$
Risk-Averting Dilemma (RAD);
$D_{r}=P-S=3-1<0$

Stag Hunt/ Inspired by Jean-Jacques Rousseau; "Discours sur l'origine et les fondements de l'inégalité parmi les hommes" (Chapter 2)

Stag Hunt

	C	D
C	R	S
D	T	P

$R ;$ Reward, $T ;$ Temptation
S; Sucker, P; Punishment

Agent2	Cooperation (C)	Defection (D)
Agent1		

Gamble-Intending Dilemma (GID); $D_{g}=T-R=5-7<0$
Risk-Averting Dilemma (RAD);
$D_{r}=P-S=3-1>0$

Trivial Dilemma Free game

Trivial

	C	D
C	R	S
D	T	P

$R ;$ Reward, $T ;$ Temptation
S; Sucker, P; Punishment

Agent2	Cooperation (C)	Defection (D)
Agent1		

Gamble-Intending Dilemma (GID); $D_{g}=T-R=5-7<0$
Risk-Averting Dilemma (RAD); $\quad D_{r}=P-S=1-3<0$

Evolutionary game

2 by 2 game considered time evolution

	C	D
C	1	$-D_{r}$
D	$1+D_{g}$	0

D_{g}; GID
$D_{r} ;$ RAD
$1+D_{g} \quad-D_{r}$

M Cooperation $<$ Defection

- In case if PD Battle field

1. A focal player plays a game with a randomly selected opponent.
2. Strategy (whether C or D) adaptation based on obtained
 payoff is considered.
You never see emerging cooperation, unless some additional mechanism for social viscosity is implemented.

Let us back to the Basic Assumption again;

- Infinite population.
- One-shot game; well-mixed situation (with neither social viscosity nor assortment among agents).
Let us describe Cooperation and defection strategies by;

$$
\begin{aligned}
& { }^{T} \mathbf{e}_{\mathbf{1}}=\left(\begin{array}{ll}
1 & 0
\end{array}\right) ; \mathbf{C} \\
& { }^{T} \mathbf{e}_{\mathbf{2}}=\left(\begin{array}{ll}
0 & 1
\end{array}\right) ; \mathbf{D}
\end{aligned}
$$

Also, let us define game structure, i.e. payoff matrix as below;

$$
\left[\begin{array}{ll}
R & S \\
T & P
\end{array}\right] \equiv \mathbf{M}
$$

Further, let us define strategy frequency among agents at a certain time step as below;

$$
\begin{array}{cc}
T_{\mathbf{S}}=\left(\begin{array}{ll}
s_{1} & s_{2}
\end{array}\right) \\
\text { Fraction of } \mathbf{C} & \mathrm{D} \\
\hline
\end{array}
$$

By simplex constraint; $\quad S_{2}=1-S_{1}$.
Let us think a simple example. When a focal player who offers D, how much of payoff expectation she can get in case of paying with another D player as her game opponent?

$$
\left(\begin{array}{ll}
0 & 1
\end{array}\right) \cdot\left[\begin{array}{ll}
P & S \\
T & P
\end{array}\right]\binom{0}{1}=P
$$

By analogy, payoff expectations of both a C and D players respectively paying with average players at this time step are;

$$
\begin{aligned}
& { }^{T} \mathbf{e}_{1} \cdot \mathbf{M} \mathbf{~ s} \\
& { }^{T} \mathbf{e}_{2} \cdot \mathbf{M} \mathbf{~}
\end{aligned}
$$

Let us consider the following system dynamics, called
Replicator Dynamics, which is thought to be a good model for describing the reproduction process of population dynamics for animal species.

Changing rate of strategy i; C when $i=1$
\& D when $i=2$

Payoff expectations of a strategy i player paying with an average player at this time step

Payoff expectations of an average player paying with an average player at this time step

Implying benefit brought to a player who adopts strategy i.

Replicator Dynamics: $\frac{\dot{S}_{i}}{s_{i}}={ }^{T} \mathbf{e}_{\mathbf{i}} \cdot \mathbf{M S}_{\mathbf{s}}-^{T} \mathbf{S} \cdot \mathbf{M} \mathbf{s}$ has three equilibriums.

Two obvious equilibriums are;
$(1,0)$; A state absorbed by C where all players offer C (C Dominate phase) .
$(0,1)$; A state absorbed by D where all players offer D (D Dominate phase).

The third one is;
(Polymorphic phase).

A question is what dynamics would be if analytic approach is applied to the Replicator Dynamics, which is a (nonlinear) cubic equation for s_{1} or s_{2}.

Let us describe Replicator Dynamics explicitly by substituting $i=1$ and 2.

$$
\begin{gathered}
\frac{\dot{s}_{i}}{s_{i}}={ }^{T} \mathbf{e}_{\mathbf{i}} \cdot \mathbf{M} \mathbf{s}-^{T} \mathbf{s} \cdot \mathbf{M} \mathbf{s} \\
\Leftrightarrow\left\{\begin{array}{c}
\dot{s}_{1}=\left[(R-T) \cdot s_{1}-(P-S) \cdot s_{2}\right] \cdot s_{1} \cdot s_{2} \\
\dot{s}_{2}=-\left[(R-T) \cdot s_{1}-(P-S) \cdot s_{2}\right] \cdot s_{1} \cdot s_{2}
\end{array}\right.
\end{gathered}
$$

When defining $\dot{S}_{1} \equiv f_{1}\left(s_{1}, s_{2}\right)$ and $\dot{S}_{2} \equiv f_{2}\left(s_{1}, s_{2}\right)$ as well as reminding Simplex constraint; $S_{2}=1-S_{1}$, we know;

$$
f_{1}=-f_{2}
$$

Again, Our current target is to evaluate Eigen values of Jacobi Matrix at respective three equilibrium; s^{*}.

$$
\mathbf{f}^{\prime}\left(\mathbf{x}^{*}\right)=\left.\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{*}}=\left[\begin{array}{ccc}
\frac{\partial f_{1}(\mathbf{x})}{\partial x_{1}} & \cdots & \frac{\partial f_{1}(\mathbf{x})}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{n}(\mathbf{x})}{\partial x_{1}} & \cdots & \frac{\partial f_{n}(\mathbf{x})}{\partial x_{n}}
\end{array}\right]_{x}=
$$

$$
\begin{aligned}
\frac{\partial f_{1}}{\partial s_{1}} & =-\frac{\partial f_{2}}{\partial s_{1}}=3(-R+S+T-P) s_{1}{ }^{2} \\
& +2(R-2 S-T+2 P) s_{1}+S-P \\
\frac{\partial f_{1}}{\partial s_{2}} & =-\frac{\partial f_{2}}{\partial s_{2}}=-3(-R+S+T-P) s_{1}{ }^{2} \\
& -2(R-2 S-T+2 P) s_{1}-S+P
\end{aligned}
$$

We know two Eaigen values of $\quad \mathbf{J}=\left[\begin{array}{ll}\frac{\partial f_{1}}{\partial s_{1}} & \frac{\partial f_{1}}{\partial s_{2}} \\ \frac{\partial f_{2}}{\partial s_{1}} & \frac{\partial f_{2}}{\partial s_{2}}\end{array}\right]=\left[\begin{array}{cc}\frac{\partial f_{1}}{\partial s_{1}} & \frac{\partial f_{1}}{\partial s_{2}} \\ -\frac{\partial f_{1}}{\partial s_{1}} & -\frac{\partial f_{1}}{\partial s_{2}}\end{array}\right]$ are;
0 and $\quad \frac{\partial f_{1}}{\partial s_{1}}-\frac{\partial f_{1}}{\partial s_{2}} \quad$ (its eiven vector is $\left.(1,-1)\right)$.

Thus, what we should currently do is evaluate sings of $\lambda \equiv \frac{\partial f_{1}}{\partial s_{1}}-\frac{\partial f_{1}}{\partial s_{2}}$ at respective three equilibrium; s *.

$$
\begin{aligned}
\lambda= & \frac{\partial f_{1}}{\partial s_{1}}-\frac{\partial f_{1}}{\partial s_{2}}=6(-R+S+T-P) s_{1}^{2} \\
& +4(R-2 S-T+2 P) s_{1}+2(S-P)
\end{aligned}
$$

(1) At $s^{*}=(1,0) ; \lambda=-2 R+2 T$

Thus, for $\quad \lambda<0$, it must be $T-R=D_{g}<0$.
(2) At $s^{*}=(0,1) ; \quad \lambda=2 S-2 P$

Thus, for $\quad \lambda<0$, it must be $P-S=D_{r}>0$.
(3) At $\quad s^{*}=\left(\frac{P-S}{P-T-S+R} \frac{R-T}{P-T-S+R}\right) ; \quad \lambda=2 \frac{(R-T)(P-S)}{R-S-T+P}$

Thus, for $\lambda<0$, it must be;

$$
P<S \wedge R<T \Leftrightarrow P-S=D_{r}<0 \wedge T-R=D_{g}>0
$$

Summing up all so far, we obtain;

Game class	Trait	Nash Equilibrium	Sing of GID; D_{g}	$\begin{gathered} \text { Sing } \\ \text { of } \\ \text { RSD; } \\ D_{r} \end{gathered}$	Source or sink at Equilibrium; s^{*}		
					$(1,0)$	$(0,1)$	$\left(\begin{array}{ll}\frac{D_{r}}{D_{g}-D_{r}} & \frac{-D_{g}}{D_{r}-D_{g}}\end{array}\right)$
PD	D-dominate	$(0,1)$	+	+	Source	sink	Saddle
Chicken	Polymorphic	$\left(\frac{D_{r}}{D_{g}-D_{r}} \quad \frac{-D_{g}}{D_{r}-D_{g}}\right)$	+	-	Source	Source	Sink
Stag Hunt	Bi-stable	$(0,1)$ or (1,0)	-	+	Sink	Sink	Source
Trivial	C-Dominate	$(1,0)$	-	-	Sink	Source	Saddle

Where $\quad s^{*}=\left(\begin{array}{cc}\frac{P-S}{P-T-S+R} & \frac{R-T}{P-T-S+R}\end{array}\right)=\left(\begin{array}{cc}\frac{D_{r}}{D_{g}-D_{r}} & \frac{-D_{g}}{D_{r}-D_{g}}\end{array}\right)$

Phase diagram of 2 by 2 games

Stag Hunt

Backgrounds \& Purpose

Most previous studies
Entirely cooperation

Agents can offer either cooperation (C) or defection (D)

The real world
Entirely cooperation

Entirely defection

Actual options might be continuous rather than discrete

Continuous or mixed strategy -

One crucial question is whether there is a considerable difference in game equilibria between the continuous or mixed strategies and those of discrete strategies?

Setting for continuous, and mixed strategy games

Continuous strategy

1. Strategy value: $s_{i} \in[0,1]$ $s_{i}=1 \quad$ complete cooperation $s_{i}=0 \quad$ complete defection

(0.8)
(0.5)

(0.2)
2. Payoff function $\pi\left(s_{i}, s_{j}\right) \equiv-D_{\mathrm{r}} s_{i}+\left(1+D_{\mathrm{g}}\right) s_{j}$ $+\left(-D_{\mathrm{g}}+D_{\mathrm{r}}\right) s_{i} s_{j}$ $T\left(=1+D_{g}\right)$

Mixed strategy

1. Strategy value: $s_{i} \in[0,1]$ $s_{i}=1 \quad$ complete cooperation $s_{i}=0 \quad$ complete defection

(0.8)
(0.5)
(0.2)

Agents can only offer either
C or D according to this strategy C when Rnd[] < s_{i}, otherwise D
Rnd[]: a random number
2. Payoff function

Agent i		
C	C	
Agent j	C	D
D	$1+D_{\mathrm{g}},-D_{\mathrm{r}}$	0,0

Results

Averaged cooperation fraction
0
Games are played on lattices $(k=8)$

	C	D
C	1	$-D_{r}$
D	$1+D_{g}$	0

Dilemma game structure hidden in traffic flow at a bottleneck due to a 2 into 1 lane junction

Macroscopic Model; Eulerian-scope
 Cole-Hopf (C-H) transform

Microscopic Model; Lagrangian-scope

Chicken Game / Hawk-Dove Game (Maynard Smith (1982)) / Snowdrift Game

The cellular automaton (CA) model

-Discretization of time and space
-Discretization of property
\square Rules for dynamics
DEffect of excluding volume

Stochastic Optimal Velocity

- Velocity in the SOV model
$v_{i}^{t+1}=\underline{(1-a) v_{i}^{t}}+\underline{a V_{i}^{t}(\Delta x)}$
v : velocity
a : parameter

Inertia
Acceleration and Deceleration Δx : headway
V : optimal velocity function

Yamauchi et al.;
Phys. Rev. E 79,
SOV model can't reproduce dynamics of traffic flow in detail.

\#036104 (2009).

S-NFS model
S-NFS model can reproduce realistically plausible traffic flows.

S-NFS model

If probability r true $s_{i}=S$, else $s_{i}=1$
$v_{i}^{(1)}=\min \left\{V_{\max }, v_{i}^{(0)}+1\right\}$
Acceleration
$v_{i}^{(2)}=\min \left\{v_{i}^{(1)}, x_{i+s_{i}}^{t-1}-x_{i}^{t-1}-s_{i}\right\} \quad \begin{aligned} & \text { The slow-to- } \\ & \text { start effect }\end{aligned}$ calling by probability q
$v_{i}^{(3)}=\min \left\{v_{i}^{(2)}, x_{i+s_{i}}^{t}-x_{i}^{t}-s_{i}\right\} \quad \begin{gathered}\text { Perspective } \\ \text { effect }\end{gathered}$
$v_{i}^{(4)}=\max \left\{0, v_{i}^{(3)}-1\right\} \quad$ Random braking calling by probability $1-p$
$v_{i}^{(5)}=\min \left\{v_{i}^{(4)}, x_{i+1}^{t}-x_{i}^{t}-1+v_{i+1}^{(4)}\right\} \begin{gathered}\text { Collision } \\ \text { avoidance }\end{gathered}$
$x_{i}^{t+1}=x_{i}^{t}+v_{i}^{(5)}$ Renewing car's location

S-NFS model
If probability r true $s_{i}=S$, else $s_{i}=1$
$v_{i}^{(1)}=\min \left\{V_{\max }, v_{i}^{(0)}+1\right\} \quad$ Acceleration
$v_{i}^{(2)}=\min \left\{v_{i}^{(1)}, x_{i+s_{i}}^{t-1}-x_{i}^{t-1}-s_{i}\right\}$
The slow-tostart effect

WKleent"Ht1
$x_{i i}^{t-1}$
$x_{i+S_{i}}^{t-1} x_{i+S_{i}}^{t}$

$x_{i}^{t+1}=x_{i}$
oration

S-NFS model
If probability r true $s_{i}=S$, else $s_{i}=1$
$v_{i}^{(1)}=\min \left\{V_{\max }, v_{i}^{(0)}+1\right\}$
$v_{i}^{(2)}=\min \left\{v_{i}^{(1)}, x_{i+s_{i}}^{t-1}-x_{i}^{t-1}-s_{i}\right\}$
$v_{i}^{(3)} \Rightarrow \quad$ WVhaert't $t=1+1$

Acceleration
The slow-tostart effect
location

S-NFS model
If probability r true $s_{i}=S$, else $s_{i}=1$
$v_{i}^{(1)}=\min \left\{V_{\max }, v_{i}^{(0)}+1\right\} \quad$ Acceleration
$v_{i}^{(2)}=\min \left\{v_{i}^{(1)}, x_{i+s_{i}}^{t-1}-x_{i}^{t-1}-s_{i}\right\} \quad \begin{aligned} & \text { The slow-to- } \\ & \text { start effect }\end{aligned}$ calling by probability q
$v_{i}^{(3)}=\min \left\{v^{(2)} r^{t}\right.$
Perspective effect
(4)

S-NFS model

If probability r true $s_{i}=S$, else $s_{i}=1$
$v_{i}^{(1)}=\min \left\{V_{\max }, v_{i}^{(0)}+1\right\}$
$v_{i}^{(2)}=\min \left\{v_{i}^{(1)}, x_{i+s_{i}}^{t-1}-x_{i}^{t-1}-s_{i}\right\} \quad \begin{gathered}\text { The slow-to- } \\ \text { start effect }\end{gathered}$ calling by probability q
$v_{i}^{(3)}=\min \left\{v_{v^{(2)}}^{(4)} \quad x_{t}^{t}\right.$

S-NFS model
If probability r true $s_{i}=S$, else $s_{i}=1$
$v_{i}^{(1)}=\min \left\{V_{\max }, v_{i}^{(0)}+1\right\} \quad$ Acceleration
$v_{i}^{(2)}=\min \left\{v_{i}^{(1)}, x_{i+s_{i}}^{t-1}-x_{i}^{t-1}-s_{i}\right\} \quad \begin{aligned} & \text { The slow-to- } \\ & \text { start effect }\end{aligned}$ calling by probability q
$v_{i}^{(3)}=\min \left\{v_{i}^{(2)}, x_{i+s_{i}}^{t}-x_{i}^{t}-s_{i}\right\} \quad \begin{gathered}\text { Perspective } \\ \text { effect }\end{gathered}$
$v_{i}^{(4)}=\max \left\{0, v_{i}^{(3)}-1\right\}$
Random braking
calling by probabitity $1-p$
$v_{i}^{(5)}=\min \left\{v_{i}^{(4)}, x_{i+1}^{t}-x_{i}^{t}-1+v_{i+1}^{(4)}\right\} \quad \begin{gathered}\text { Collision } \\ \text { avoidance }\end{gathered}$
$x_{i}^{t+1}=x_{i}^{t}+v_{i}^{(5)}$ Renewing car's location

Open boundary condition

The last car in the System (location x_{i}^{t})
Each car is injected with probability α. (a)
Each car is injected with probability $1-\beta$. (b)
Each car is always existing in the Post-system. (c)

Reproduction fundamental diagram at a single-lane

Fundamental diagram of real traffic flow
Y.Sugiyama; Nagare 22, 95 (2003)

Density (1/km)

Fundamental diagram of S-NFS model with open boundary condition ($p=0.99, q=0.99, r=0.99$)

Motion of cars at a bottleneck

Meta-stable phase ($\alpha=1.0, \beta=1.0$) Indication from time step $t=3000$

- C's are majority and D's are minority. (Fraction $P_{C}=0.9$) Normalized Flux: 0.877

Strength of dilemma on each phase $p_{1}=0.6, p_{2}=0.8$
D's are majority \quad C's are majority
$0.0 \quad$ Fraction P_{C}

Game structure on each phase

Conclusion

-Free-flow and Jam phase have

Trivial game structure.

- Meta-stable and High-density phase have Prisoner's Dilemma game structure.
- Social dilemma can be diluted by a rigorous traffic rule, in which last minute interruption is never allowed by well mannered drivers.

Future Work

It might be interesting to examine the question of whether frequent lane changes in a 1D-like homogenous road (without any obvious bottlenecks such as a lane-closing, uphill travel, or a tunnel) may also cause another social dilemma. We assume that changing lanes itself could cause a dilemma in a traffic flow.

Occurring jam

