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Prof. TANIMOTO, Jun

@ Mutually-interpenetrative view over
wide spatial-scales
—

Architecture

Global scale Urban scale
i -II'I'.iI.%Bﬁ.i:.%ﬁl;Elhln_ _ Building-block
108 105 104 1
- — : [
R —m : = - ] o _Building
To elaborate the Human - Environment -Social || | L=""" =T

System, it's important a concept of ’ _ |
“Simultaneous” or “Bridging to various scales”. X

Two physical systems / :

having neighboring
special scales are
mutually connected
through boundary
conditions.
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When one deals with both Large-
and Small-systems simultaneously,
a numerical solution scheme

requires [T¢] = [T,].
|

Mutually-interpenetrative view over
wide spatial-scales

)

Because of sharing the
interaction through the
boundary, the scale velocity
MUST be also shared.

[L:]

Grid size for the Large-scale system is consistent with that of the Small-scale
— Huge computational resource is requisite.
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Urban atmosphere sub-model

Surface Boundary Layer (SBL) 150m

0 Eq. model, Gambo’s turbulent length
scale

Building thermal system sub-
model

Rooms, HVAC systems etc

Soil, vegetation sub-model
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dimentional finite differencial scheme.

Evapotranspiration from lawn

Anthropogenic surface sub-modg{l/:"

— internal generation heat
9shon-wave radiation
elong-wave radiation
b anthropogenic heat from traffic

anthropogenic heat from
"B 4i-conditoning cquipment

WP Evaporation
© nodal point with no volume
O boundary value
® nodal point

Urban Atmospheric
Sub-model

Every wall or slab is devided into
several control volumes for one-

Soil Evaporation
Sub-model

Evaporation from
artificial surface

The height of exhaustion from HVAC syste
m varies its loaction of external device.

At the top of SBL., temperature,wind velocity.solar radiation and
absolute humidity are given as boundary conditions.

Space sensitive and latent heat extraction requirement
H,= 38,0, (0, =T )+ S WS, Cor (T 1,)

(X, —X,)+8,W,

H, =1

Lawn surface is also available
as a roof finishing.
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\ ™ Second story|

—

First story

Basement




Mutually-interpenetrative view over
Environment | mutually different systems

Human
Social System
“Environmental problems”
Environ mean social dilemmas
conflicting those three
ment systems.
........................... 1.
............ Human
Social

Decision making ‘—> Social
e

Environment

Science for complex system

Evolutionary game theory, Multi-agent simulation,
Artificial intelligence (GA, NNw etc)

What is the Game Theory ?

Game theory is a study of strategic decision making. More formally, it is "the study of
mathematical models of conflict and cooperation between intelligent rational decision-
makers.*

John von Neumann & Oskar Morgenstern; Theory of games and economic behavior,
1944.

Game theory has been widely recognized as an important tool in
many fields; economics, political science, psychology, as well as
biology, information science and even statistical physics. Eight game-
theorists, including John Nash have won the Nobel Memorial Prize in
Economic Sciences, and John Maynard Smith was awarded the
Crafoord Prize for his application of game theory to biology.

Zero-sum (Constant-sum) games

(Japanese) Chess, Go. Minimax theorem (von Neumann); For every two-
person, zero-sum game with finitely many strategies, there exists a value V
and a mixed strategy for each player, such that (a) Given player 2's strategy,
the best payoff possible for player 1 is V, and (b) Given player 1's strategy,
the best payoff possible for player 2 is —V.

Non zero-sum (Non constant-sum) games

Many applications happening in real world. Social dilemma, Prisoner’s

Dilemma, Chicken games etc. Cuba Crisis -->Chicken game?




Player 2 Player 2
2 by 2 game chooses Left chooses Right
Pl 1
chcc;:se.r','p 4.3 -1, -1
Agent1 Agent2
Player 1
chooses Down 0.0 3.4

Nomsl form or psyoff msinx of 5 2-plsyer, 2-zirsfegy game

Agent2| Cooperation | Defection
Agent1 (C) (D)
Cooperation

R, R S, T

(C)

Defection
T, S P, P
(D)

R;Reward, T; Temptation, S;Sucker, P; Punishment

Dynamics in nonlinear systems

Nonlinear equation
ax . 7
—=x=f1 (X)
dt

A question, which seems crucially important to see basic feature
of the system, is whether the system has steady states
(equilibriums) or not.

If so, how are those?

If the answer for this question can be drawn through analytical
way, that’s much better than any numerical approaches.




Analytical approach concerning equilibrium (steady-
state) for Linear systems

ax .
d_ =X = AX
l
For simplicity, we disregarded impacts resulting
from boundary conditions, which makes sure
only to be concerned on the system body.

dx 1
—=AXES —dx=Adt & x:exp[At]+c
dt X
Equilibrium ¢ Steady-state W
dx : . -
S —=0 < x=0 2Ax =0 < |x =0
dt
dx :
Equilibrium < Steady-state <> = =0 < x=0

Suppose f —> o0 .
Only when X(t) = exp[A t] -0,

this system has Stable Equilibrium (steady-state).

Scalar space Vector-Matrix space

If a<0 then exp[a {]—0. If all eigen values of A (there are n
eigen values if A is defined as n-
square matrix) are negative,
exp[A t]—0.

Thus, what we should investigate is whether signs of all
eigen values of A are + or not.




Equilibrium

X* Stable Unstable Unstable
Sink Source Saddle
Xy X,

A4, <0 A4 >0 A4 <0,4,>0

Eigen values of A

dax

—_— = X = AX Time-continuous system

dt

Time discretization by Forward FDM
Xk+1 _Xk :AtAXk

S Xpy1 = (At A+ E)xk Linear mapping

Here, let us remind the Stability condition of Transition Matrix; T in System-state
Equation.

The necessary and sufficient condition for convergence is;

‘Max[eigen[T]]‘ <1




Xy 41 :(At-A+E)xk

I
T

Now, let us assume that the system instinctively stable; e.g.;

Max|eigen[A]]< 0
We know; eigen[E] =1 .

It is worthwhile to note that even though an instinctive system is stable, its
mapping system may be unstable, because the following situation might

happen; Max[eigen[T]] <-1 :

It is remarkably amazing that a mapping operation by time-Forward FDM may
cause unstable (numerical divergence) even though the system instinctively
has stability.

Let us take a look when time-Backward FDM is applied.
ax .
— =X=AX
dt

Time discretization by Backward FDM
X — X = AL-AX
-1
ox,,, =[1-Ar-A ['x, =Tx,

If an instinctive system is stable, its mapping system is always stable, because;
0 < Max|[eigen|T]|<1 -

It is also notable that a mapping operation by time-Backward FDM is always
consistent with the system instinctive stability.

Thus, if a system is instinctively stable, its mapping by Backward FDM is stable
as well.




Analytical approach concerning equilibrium (steady-
state) for Nonlinear systems

Pseudo (quasi)-linearization approach should be applied.
x=1 (x)

Let us take the Taylor development of nonlinear function f'around an
equilibrium x=x*.

f(X)Zf(X*)+f'(X*Xx—x*)+%T*)(X_X*)2 Foe
= f(x)sz’(x*Xx—x*)

=0; because of the definition of equilibrium

f(x):f'(x*Xx—x*)

f(x)= f’(x* Xx -X ) = f'(x* )x_— f'(x* )x*

Matrix Unknown Vector
Now, nonlinear function fhas been consisted of consisted of
. . D vector.
approximated by a linear function like; constant constant
AX + Constant. \ values. values. /

To the end, we can say that;

whether the Equilibrium, x=x* , of X = f(x) can be evaluated by eigen

values of; _afl—(x) i M_ o
f’(x* ) _of (x) _ a?cl . 53:6,1 Matrix
X o |8(x) ()

% ox,

L Jdx=x*




Thus,

if all eigen values of Jacobi Matrix are negative, the equilibrium
x=x* is stable sink point.

if all eigen values of Jacobi Matrix are positive, the equilibrium
x=x* is unstable source point.

If both negative and positive values are co-exist, the equilibrium
x=x* is unstable saddle point.

Application; Analytical approach concerning
equilibrium (steady-state) for Nonlinear systems

2-player 2-strategy game (2 by 2 game)

Class Dilemma? |GID |RAD
Prisoner’s Dilemma; PD Yes Yes |Yes
Chicken (Snow Drift; Hawk-Dove) | Yes Yes |No
Stag Hunt; SH Yes No |[Yes
Trivial No No |No

Basic Assumption

Infinite population.

One-shot game; well-mixed situation (with
neither social viscosity nor assortment
among agents).




Prisoner’s Dilemma

Agent1 Agent2

1

Agent2| Cooperation| Defection
Agent1 (C) (D)
Cooperation

R, R S, T

(C)

Defection
T, S P, P
(D)

R;Reward, T;Temptation, S;Sucker, P;Punishment

Prisoner’s Dilemma C D
C |RR|ST
Agent1 Agent2 D | T,S|PP

R;Reward, T; Temptation
S; Sucker, P;Punishment

—————

Agent

Agent1
Cooperation

______

_________

Risk-Averting Dilemma (RAD); D=P-S=3-1>0




Prisoner’s Dilemma

c | b
Agent1 Agent2 g I; IS,

R;Reward, T; Temptation
S; Sucker, P;Punishment

=8)>T+S(=6)>2P(=4)

Agent b
Agent1 . D) -
Cooperation

Risk-Averting Dilemma (RAD); D =P-5=3-1>0

Prisoner’s Dilemma

Player2
D,>0
Worst preferable D> o EaqualPareto Optimum
for Player 1 g
Pareto Inverse- Pareto Optimum
Optimum

Equal Pareto

Inverse-Optimum

[

+«—— Most preferable

for Player 1
S P R T ,

S<P<R<T Player1




Chicken.” Hawk-Dove Game (Maynard Smith (1982))

T

Som
Player2 .
| b< o%

p
— D, >0
(_) Equal Pareto Optimum
. —

 Snowdrift Game

T

RPareto Optimum

Worst
. \ Most preferable
- for Player 1
p. s RIT |,
P<S<R<T Player1
Chicken C | D
Agent1 Agent2 1(; I; IS’

R;Reward, T; Temptation
S; Sucker, P;Punishment

2R(=8)>T+S(=6)>2P(=4)

Agent2 Defection
Agent1 (D)
Cooperation '3 Nash Equilibrium
(C) mum "~
Defection
(D)

Risk-Averting Dilemma (RAD); D=P-S=3-1<0




Stag Hunt inspired by Jean-Jacques Rousseau; “Discours sur l'origine
et les fondements de l'inégalité parmi les hommes” (Chapter 2)

Player2
a
Worst preferable
for Player1 — | . ,Dg <0

Pareto Inverse-
Optimum
Equal Pareto /
Inverse-Optimum

S| P R
S<P<T<R Player1

Stag Hunt c 1 b
Agent1 Agent2 LR

D T P
R;Reward, T; Temptation
S; Sucker, P;Punishment

Agent2| Cooperation| Defection

Agent1 (C) (D)
Cooperation [Nash Equilibriur
I/ 7 \| 1

(C) Best=Equa\rPa’|I'eto Optimum

Defection o
5 L4
(D) Nash Egquilibrium
Gamble-Intending Dilemma (GID); D,=T-R=5-7<0

Risk-Averting Dilemma (RAD); D=P-S=3-1>0




Trivial Dilemma Free game

Player2

r R |
P<S<T<R Player1
Trivial C 1 D
Agent1 Agent2 E I; i

R;Reward, T; Temptation
S; Sucker, P;Punishment

Agent2| Cooperation| Defection

Agent1 (C) (D)
Cooperation [Nash Equilibrium
'/ 7 \| 3

(C) Best=Equa\rPa’|I'eto Optimum

Defection
5 1
(D)

Gamble-Intending Dilemma (GID); D,=T-R=5-7<0
Risk-Averting Dilemma (RAD); D =P-5=1-3<0




Evolutionary game
2 by 2 game considered time evolution D [1+D,] 0

I k 1 o=
ANL ﬂ“

Cooperation ﬁ Defection (Dg>0! D>0)

1. A focal player plays a game with
a randomly selected opponent.

2.Strategy (whether C or D) L R
adaptation based on obtained Time step
payoff is considered.

You never see emerging cooperation, unless some additional

mechanism for social viscosity is implemented.

Cooperation
fraction

What is Social Viscosity? A restricted relation among

agents
-Kin selection }
-Direct reciprocity Lessing Anonymity

-Indirect Reciprocity
-Network Reciprocity
- Group selection

ﬂ*ﬁﬂnﬁ
1A
»ngkn

Well-mixed situation A Game on a network

Emerging cooperation




Let us back to the Basic Assumption again;
- Infinite population.

- One-shot game; well-mixed situation (with neither social
viscosity nor assortment among agents).

Let us describe Cooperation and defection strategies by;

Te,=(1 0) :c
Te,=(0 1) :p
Also, let us define game structure, i.e. payoff matrix as below;
R ST
T P|

Further, let us define strategy frequency among agents at a
certain time step as below; T
§ = (Sl Sz)

Fraction of C D

By simplex constraint; §, = 1- S

Let us think a simple example. When a focal player who offers D,
how much of payoff expectation she can get in case of paying with
another D player as her game opponent?

©0 1)-[’; ﬂ@:p

By analogy, payoff expectations of both a C and D players
respectively paying with average players at this time step are;

T
e -Ms
"e,-Ms




Let us consider the following system dynamics, called
Replicator Dynamics, which is thought to be a good model
for describing the reproduction process of population dynamics for
animal species.

S; e ‘Ms—'s-Ms

-
S
T

Changing rate of Payoff expectations of a Payoff expectations of
strategy i; C when j=1 strategy i player paying an average player

& D when /=2 with an average player paying with an average

at this time step player at this time step

Implying benefit brought to a player who
adopts strategy /.

S;
Replicator Dynamics: ——— e M s— s - M s has three equilibriums.

Si

Two obvious equilibriums are;

(1 ,0) ; A state absorbed by C where all players offer C (C Dominate phase) .

(0,1) ; A state absorbed by D where all players offer D (D Dominate phase) .

The third one is;

(Polymorphic phase).

A question is what dynamics would be if analytic approach is applied to the
Replicator Dynamics, which is a (nonlinear) cubic equation for s, or s,.




Let us describe Replicator Dynamics explicitly by substituting i=1 and 2.
*5; T T

—="¢;-Ms—s-Ms

S

= [(R=T)-5,~(P=5)-s.)s.-s,
S, :_[(R_T)’Sl _(P_S)'Sz]°51 0y

When defining S = fl(Sl’ SZ) and 52 = fZ(Sl,SZ) as well as
reminding Simplex constraint; S, = 1— S, we know;

==/

Again, Our current target is to evaluate Eigen values of Jacobi Matrix at

N

respective three equilibrium; s*. o) . X
af( ) Ox, ox,
fel 2
X b |20() | 2(x)
Ox, ox, |
r
9

:—%=3(—R+S+T—P)slz
0s, 0s,

+2(R-25~T+2P)s, +S—P

I % 3 R4S+T-P)s

0s, 0s,
-2(R-28-T+2P)s,~S+P

N

Hh A||h N
Os; Osy | | Os; 0s,
% P |_%h %
0s; 0Osy 0s; 08

We know two Eaigen values of J= are;

L/

0 and
aSl 852

(its eiven vector is (1,-1)) .




O

Thus, what we should currently do is evaluate singsof A =

at respective three equilibrium; s*. A
0 0
1=D 9 _GRes+T-P)s
Os, 0s,
+4(R-28S-T+2P)s, +2(S—P)
mAt s*=(10) ;. 1 =-2R+2T
Thus,for A<0 | itmustbe T—RZDg<O.
@At s*=(0,1); A1=25S—-2P .
Thus,for A <0 it mustbe P—S=Dr =0 .
. ( P-S R-T _(R-T)P-5)
@) At s _(P—T—S+R P—T—S+Rj’ _ZR_S_T+p
Thus,for A <0 , it must be;

P<SAR<T & P-§5=D, <O0AT-R=D, >0,

Summing up all so far, we obtain;

Game Trait Nash Equilibrium Sing | Sing Source or sink at Equilibrium; s*
class of of 1,0 0,1
o | oD b b
GID; | RSD; ! —E
5 b D,-D, D,-D,
PD D-dominate (0,1) + + Source sink Saddle
Chicken | Polymorphic I D + Source | Source Sink
3 — e
[Dg -D. D, —Dg]
Stag Hunt Bi-stable (0,1) or (1,0) + Sink Sink Source
Trivial C-Dominate (1,0) Sink Source Saddle
. P-S R-T D, -D,
Where s%= =
P-T-S+R P-T-S+R) \D,-D, D,-D,




Phase diagram of 2 by 2 gamgs

g
A

Chicken PD

> D
Trivial Stag Hunt
Prisoner’s Dilemma, PD

Dg
A

Chicken PD

Source ¢

Sink

All agents are
absorbed by D.
1 1 > S

0 1

Stag Hunt

»D




Chicken

D 9
Chicken PD
D-dominate
Trivial
Stag Hunt
D 9
A

PD

D-dominate

»D

Trivial Stag Hunt




Trivial, dilemma free game

?

ource
D g
A
Sink
Chicken
_ All agents are
Polymorphic absorbed by C.
s
0 1
> L),
Trivial Stag Hunt
Bi-stable
Phase diagram of 2 by 2 games
) FINALE
A
Chicken PD
Polymorphic D-dominate
»D,
Trivial Stag Hunt
C-dominate Bi-stable




Backgrounds & Purpose

— Most previous studies — The real world

Entirely Entirely Entirely

Entirely
cooperation defection

cooperation defection

A A (SR

Agents can offer either Actual options might be
cooperation (C) or defection (D) continuous rather than discrete

Discrete strategy —

L— Continuous or mixed strategy —

One crucial question is whether there is a considerable
difference in game equilibria between the continuous or
mixed strategies and those of discrete strategies?

Setting for continuous, and mixed strategy games

..... Continuous strategy s Mixed strategy eeranranans
1. Strategy value: s; €[0,]] 1. Strategy value: s; €[0,1]

s;=1 complete cooperation 8= 1 complete cooperation
5=0 complete defection : =0 complete defection

0.8) (05) (0.2)

(0.8) (0.5) (0.2)

2. Payoff function Agents can only offer either
7(s;,5 ;) ==Dys; +(1+ Dy)s; . C or D according to this strategy
' ' i | Cwhen Rnd[] <s, otherwise D :
T =Dy +Dosis; | Rnd[ ]: a random number :
T(=1+D,)
i 2. Payoff function
Agent j
|Agent i C D
C 1, 1 -D,, 1+D,
D 1+D,, -D, | 0, 0




Results c[p
Averaged cooperation fraction C 1 -D,
| Cee— | D |1+D,| 0

0 1
Games are played on lattices (k = 8) Dy; GID  D;; RAD
®c o
--- Discrete strategy ---:r Continuous strategy -~--- Mixed strategy - -

fid: 11

0 0
0 02040608 1 0 02040608 1 0 02040608 1

r 1

e o = m
: i1 0.8 108
i 0.6 106 | 4
| 0.4 0.4 ;
; ! 0 ;

D " D, D,
gﬁm%me@;ﬁfmw
iy - SRR TEIY AH
Dilemma game §
o
structure | ]

hidden in traffic flow ¢
at a bottleneck due |} 1

C-agent i <
H (b)D:agent?ﬁ\pd ]
toa2into 1 lane o | G
- - . %
junction ./f v&@/
T
B~ D <c)o:1,/>’1o>%1¢?rtf”"m

ERRERe PRARELREED :E]
C-agent&D-agent® F| 5




—o— Staggered —8— Square

14
= x107
o =
&‘E’ 12 4
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o 107 <g| Roughness
E -
a density

8 : l

Momentum qux 10 30 40
plan area ifdex Ay [%]
.ﬁl ——
° Turbulence

produced by
—>/ roughness ——

— (= a0 O DR

BE v wimres T s
= ey

Shear stress 7 (momentum absorption)

Traffic flux 300
Free-flow phase ) OO > O

Platoon dri

N
=]
=]

Meta-stable phase

. . A subtle perturbation tigers a
High-density phase change to High-density
phase phase.

Jam phase Traffic
density

100 00 ‘
Density[1/km]

Traffic turbulence
Lane changing Lane closing

brake brake [brake [brake

-
(=4

lux[1/5min]

Drag

CE Eaed




Macroscopic Model; Eulerian-scope e iopf (C-H) transform
Burgers Equation | ,—og ), Diffusion Equation

Kinetic Model;
NS-like Equations u=2uu u, f=f.
v discretization in time & space
Ultra-discretization Discrete Burgers | Discrete C-H | Discrete Diffusion
. inverse-transform .
Equation Equation
Ultra-discretization v
. Ultradiscrete C-H .
UItra-dlscretg inverse-transform| UItr_a—dlscretg
Burgers Equation Diffusion Equation
Euler — Lagrange transform
Wolfram's CA rule-184 | | Zero Range
. . : hasti i Process (ZRP
Car Following | Optimum Velocity Sk A (ZRP)
Model Model Asymmetric Simple
' discretization in time & space * Exclusion Process (ASEP)
Superposing expression

Cellular Automaton ’ Stochastic Optimal Velocity (SOV)

(CA) Model
Microscopic Model; Lagrangian-scope

Real Traffic flow

300
Free

£ wide moving jam

'E 200 | Meta-stable F

< x

= =

= ; , ) i

=100 \__ High Density

Zuoo/ [ |
] . free flow
0 100 200 Density

B[ 1/km] F: free flow

Observed at Tomei highway (Sugiyama et al.) S: S_ynChron!Zed. ﬂOW
J: wide moving jam

Kerner's Three Phases Theory




Spatiotemporal diagram #1

-
OlCIO[0[CI0CC0] eeeeeeeee

distance (Tian,J.-f.- et al, 2009)

time step

Free flow phase

Spatiotemporal diagram #2

(Tian,J.-f.- et al, 2009)

time step

D

When a jam clusteris emerging up




Kerner’s Three Phases Theory

F: free flow
S: synchronized flow
J: wide moving jam

Purpose

Revelation of dilemma game
structure hidden in traffic flow

Actions of each

f car at bottleneck \
B!

safety danger

R

S

R

-

T

®

1 3

S

Payoff matri

Q
x_/

I

Prisoner’s Dilemma game-
T>RP>S
1{/2]|3( 4

Equilibrium at P
Replicator Dynamics

Prisoner’s Dilemma gam
(D-Dominate)

Social Payoff

danger

safety
Proportions of safety




Purpose Revelation of dilemma game
structure hidden in traffic flow

Actions of each Chicken aame —
car at bottleneck ’

(T>RXS>P
11| 2

:B:

' - J
Zana" 31l 4
safety danger
R <@ Equilibrium at Tand S
safety | |2 3 Replicator Dynamics
R T ) Chicken game
tA: = =

(Polymorphic) /

R T P
danger<g 1 — |4

i
\ Payoff matrix/ danger safety

Proportion of safety

Social Payoff

Chicken Game. Hawk-Dove Game (Maynard Smith (1982)).” Snowdrift Game

2 x 2 game

Player2 C D
Player1

C 4,4 | 35 [R S| 143
D 5,3 2,2 |\T P 5 2
For Chicken; T>R>S >P

~ For PD; T>R>P >
i Player2 ki ]
& Pareto Optimum 1

Max is T (exploiting) and Min is P (mutually .,'.:; O
defecting).

P R IT
Player1

This seems Chicken is a good metaphor for
“resource-competing problems” Worst

...... s,

4 Mos-"fpreferable
for Player 1

PSR T
Player1




Purpose

Revelation of dilemma game
structure hidden in traffic flow

Actions of each
car at bottleneck

safety danger

Stag-Hunt game———
[ mes
1((2]]3( 4

S

®
R)

-

T P
danger |~ |2 <g 3

s Q
Payoff matrix/

Equilibrium at R and P

Replicator Dynamics

Stag-Hunt game
(Bi-stable)

Social Payoff

danger safety
Proportion of safety

Purpose

Revelation of dilemma game
structure hidden in traffic flow

Actions of each
car at bottleneck

Trivial game ———
\ R>T>S>P

iB;
safety danger
(R S
safety g 1 3
tA:
danger 2 4
S

P
Payoff matrix/

Social Payoff

T I
111234
Equilibrium at R

Replicator Dynamics

Trivial game
(C-Dominate)

danger
Proportion of safety

safety




Prisoner’s Dilemma gam
(D-Dominate)

qual Pareto
Optimum

Social Payoff

danger
Proportion of safety

Stag-Hunt game
(Bi-stable)

safety

O

Social Payoff

:

Social Payoff

danger

Social Payoff

garme

Chicken game

(Polymorphic) /

Equal Pareto
Optimum

Nash
Equilibrium

safety
Proportion of safety

Trivial game
(C-Dominate)

danger safety
Proportion of safety

danger

safety
Proportion of safety

&R TEY AA
ck%)lﬁﬁﬁb\ii_
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i TR
§\. i | BN, REE
®

D-agen;"l Q]
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E
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C-agent&D-agent® F| 5
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Back d
acrgourn Trafic flow
( Simulation%sis by modeling \

Macrosce

Decision-making
process has not
been considered.

Kinetic g

Microscop

Dynamical approach by self-driven
multiparticle system

/

Decision-making process
on situation indivisuals exist.

[ Game theory

The cellular automaton (CA) model
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Stochastic Optimal Velocity

(SOV) model
- Velocity in the SOV model .
vit+1 _ (l—a)vf -I—ClVl-t(A)C) v: velocity

a: parameter

Acceleration and .
\ Ax: headway
Deceleration ‘ ‘
V: optimal velocity

SOV model can’t reproduce ] function

Yamauchi et al. ;

[dynamics of traffic flow in detail. | pnys Rev. E 79
#036104 (2009).
~ S-NFS model *

S-NFS model can reproduce
\realistically plausible traffic flows.
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S-NFS model

If probability r true 5=S, else s;~1
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Open boundary condition

Pre-System[Length:V, _+S] System[Length:L] Post-System[Length:2S]

X -V +S) |
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g ) ) an
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max

. The last car in the System (location x;)
. Each car is injected with probability «. (a)
O Each car is injected with probability 1-2. (b)

. Each car is always existing in the Post-system. (c)
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2 lane model
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Motion of cars at a bottleneck
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-C’s are majority and D’s are minority. (Fraction P,=0.9) Normalized Flux: 0.877

w w L] w - L] LI . M
*C’s and D’s are half. (Fraction P.=0.5) Normalized Flux: 0.744

nac Frad Whedihennadh rmassodhodinadhadll™ e = —

-D’s only exist. (Fraction P,=0.0) Normalized Flux: 0.701
- e~ e - * ++ e T - i ] T T e e —
| |

250 300 (bottleneck) location
C(Cooperate) Strategy . D(Defect) Strategy .

Moving direction

Strength of dilemma

on each phase
p,=0.6,p,=0.8 0.0 Fraction P, 1.0
Social dynamics Strength of Diemma Ifhase diagram

D’s are majority C’s are majority

0 o 1
M Free-flow phase

B Jam phase
Black: D-dominate at all Pc Il High-density

Gray: C-dominate at all Pc phase

White: the rest Cﬂ,ux |D B Meta-stable phase




Game structure on each phase
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Game structure when it’s hard for

cars to cut into the lane
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Conclusion
-Free-flow and Jam phase have
Trivial game structure.

- Meta-stable and High-density phase have
Prisoner’s Dilemma game structure.

-Social dilemma can be diluted by a
rigorous traffic rule, in which last minute
interruption is never allowed by well
mannered drivers.




Future Work

It might be interesting to examine the question of whether frequent lane
changes in a 1D-like homogenous road (without any obvious bottlenecks
such as a lane-closing, uphill travel, or a tunnel) may also cause another
social dilemma. We assume that changing lanes itself could cause a
dilemma in a traffic flow.
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