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Special lecture series of              
Environment Energy Engineering

Environmental problems 
can be likened to social 

dilemma games.
Prof. TANIMOTO, Jun

都市境界層
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Mutually-interpenetrative view over 
wide spatial-scales

Two physical systems 
having neighboring 
special scales are 
mutually connected 
through boundary 
conditions.

Small scale←Interaction→Large scale

Building

Building-block

To elaborate the Human - Environment -Social
System, it’s important a concept of 
“Simultaneous” or “Bridging to various scales”.
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Scale velocity;
[L]

[T]
[Ll]

[Tl]

[Ls]

[Ts]
≒Ll

Ls

Interaction

When one deals with both Large-
and Small-systems simultaneously, 
a numerical solution scheme 
requires [Ts] = [Tl].  

Urban

Human
Architecture

Mutually-interpenetrative view over 
wide spatial-scales

Because of sharing the 
interaction through the 
boundary, the scale velocity 
MUST be also shared.

Grid size for the Large-scale system is consistent with that of the Small-scale 
system for sure [Ls] ≒ [Ll].     → Huge computational resource is requisite.
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Building Related Sub-model
Evaporation from bare soil

Evapotranspiration from lawn 

Lawn

EVL

EVS

Soil Pavement

At the top of SBL, temperature,wind velocity,solar radiation and 
absolute humidity are given as boundary conditions. 

short-wave radiation
internal generation heat

0.
5m

long-wave radiation

anthropogenic heat from traffic

anthropogenic heat from
air-conditioning equipment

Evaporation

nodal point

boundary value

nodal point with no volume

1/ETR

Every wall or slab is devided into 
several control volumes for one-
dimentional finite differencial scheme.
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( ) ( )osetairairoafSf
walls

jSsetjjs TTCVSWSTTSH −++−= ∑ γα ,

( ) lfosetairoafwl WSXXVSlH +−= γ

Space sensitive and latent heat extraction requirement
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First story

Second story

Basement

Top story

Soil Evaporation
 Sub-model

Evaporation from 
artificial surface

sW
lW

The height of exhaustion from HVAC syste
m varies its loaction of external device. Lawn surface is also available 

as a roof finishing.

改良・建築-都市-土壌連成系モデル

Revised Architecture-Urban-Soil 
Simultaneous Simulation Model, 
Revised AUSSSM

太陽放射 降雨

流出

熱エネルギー

蒸発

水収支

放射収支

Urban atmosphere sub-model
0 Eq. model， Gambo’s turbulent length 
scale

Building thermal system sub-
model
Rooms, HVAC systems etc

Soil, vegetation sub-model
Anthropogenic surface sub-model 

Alteration of 
urban surfaceHigh density of 

energy         
consumption
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× ×
Unless bridging, 
appropriate boundary 
conditions MUST be given.

Revised AUSSSM

都市

建築
土壌Between physical systems

Environ
ment

Human
Social

How “bridges” are defined?

“Environmental problems”
mean social dilemmas 
conflicting those three 
systems.

Decision making → Social

Environment

→ →

→→

→

Science for complex system
Evolutionary game theory, Multi-agent simulation, 
Artificial intelligence (GA, NNw etc）

Human
Social System

Mutually-interpenetrative view over 
mutually different systemsEnvironment

Game theory is a study of strategic decision making. More formally, it is "the study of 
mathematical models of conflict and cooperation between intelligent rational decision-
makers.“

John von Neumann & Oskar Morgenstern; Theory of games and economic behavior, 
1944.

What is the Game Theory ?

Zero-sum (Constant-sum) games
(Japanese) Chess, Go. Minimax theorem (von Neumann); For every two-
person, zero-sum game with finitely many strategies, there exists a value V 
and a mixed strategy for each player, such that (a) Given player 2's strategy, 
the best payoff possible for player 1 is V, and (b) Given player 1's strategy, 
the best payoff possible for player 2 is −V.

Non zero-sum (Non constant-sum) games
Many applications happening in real world. Social dilemma, Prisoner’s 
Dilemma, Chicken games etc. Cuba Crisis -->Chicken game?

Game theory has been widely recognized as an important tool in 
many fields; economics, political science, psychology, as well as 
biology, information science and even statistical physics. Eight game-
theorists, including John Nash have won the Nobel Memorial Prize in 
Economic Sciences, and John Maynard Smith was awarded the 
Crafoord Prize for his application of game theory to biology.
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2 by 2 game

Cooperation
（C）

Defection
（D）

Cooperation
（C）

R，R S，T

Defection
（D）

T，S P，P

Agent1

Agent2

R；Reward，T；Temptation，S；Sucker，P；Punishment

Agent1 Agent2

Dynamics in nonlinear systems

( )d
dt
x x f x= =&

Nonlinear equation

A question, which seems crucially important to see basic feature
of the system, is whether the system has steady states 
(equilibriums) or not. 

If so, how are those? 

If the answer for this question can be drawn through analytical 
way, that’s much better than any numerical approaches.
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Analytical approach concerning equilibrium (steady-
state) for Linear systems

d
dt
x x Ax= =&

For simplicity, we disregarded impacts resulting 
from boundary conditions, which makes sure 
only to be concerned on the system body.

[ ] cAxAx
x

xAx
+=⇔=⇔= tdtd

dt
d  exp1 

Equilibrium ⇔ Steady-state In this case,

⇔ = ⇔ = ⇒ = ⇔ =
d
dt
x 0 x 0 Ax 0 x 0* *      &

Equilibrium ⇔ Steady-state ⇔ = ⇔ =
d
dt
x 0 x 0   &

∞→tSuppose                  .

Only when                                              ,

this system has Stable Equilibrium (steady-state).

( ) [ ] 0Ax →= t expt

Scalar space

If a<0 then exp[a t]→0．

Vector-Matrix space

If all eigen values of A (there are n
eigen values if A is defined as n-
square matrix) are negative,      
exp[A t]→0．

Thus, what we should investigate is whether signs of all 
eigen values of A are + or not.



6

1x

2x

0, 21 <λλ

1x

2x

1x

2x

0, 21 >λλ

x*
Equilibrium

Stable                       Unstable               Unstable

Sink                          Source                    Saddle

Eigen values of A

0,0 21 >< λλ

d
dt
x x Ax= =& Time-continuous system

kk1k xAxx  ⋅∆=−+ t

( ) k1k xEAx  +⋅∆=⇔ + t Linear mapping

Time discretization by Forward FDM

[ ][ ] 1eigenMax ≤T

Here, let us remind the Stability condition of Transition Matrix; T in System-state 
Equation.

The necessary and sufficient condition for convergence is;
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( ) k1k xEAx  +⋅∆=+ t

[ ][ ] 0eigenMax ≤A

T
Now, let us assume that the system instinctively stable; e.g.; 

.

[ ] 1eigen =EWe know;                                           .

It is worthwhile to note that even though an instinctive system is stable, its 
mapping system may be unstable, because the following situation might 
happen;

.[ ][ ] 1eigenMax −<T
It is remarkably amazing that a mapping operation by time-Forward FDM may 
cause unstable (numerical divergence) even though the system instinctively 
has stability. 

Let us take a look when time-Backward FDM is applied.

d
dt
x x Ax= =&

Time discretization by Backward FDM

1kk1k xAxx ++ ⋅∆=−  t

If an instinctive system is stable, its mapping system is always stable, because;

.[ ][ ] 1eigenMax0 << T

[ ] kk1k TxxAx =⋅∆−=⇔ −
+

11  t

It is also notable that a mapping operation by time-Backward FDM is always 
consistent with the system instinctive stability.  

Thus, if a system is instinctively stable, its mapping by Backward FDM is stable 
as well.
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Analytical approach concerning equilibrium (steady-
state) for Nonlinear systems
Pseudo (quasi)-linearization approach should be applied. 

Let us take the Taylor development of nonlinear function f around an 
equilibrium x=x*.

( )&x f x=

( ) ( ) ( )( ) ( )( ) L+−
′′

+−′+=
2

!2
*

*
*** xxxfxxxfxfxf  

( ) ( ) ( )( )*** xxxfxfxf −′+≅⇔  
=0; because of the definition of equilibrium

( ) ( )( )** xxxfxf −′=

( ) ( )( ) ( ) ( ) ***** xxfxxfxxxfxf ′−′=−′=
Matrix 

consisted of 
constant 
values.

Vector 
consisted of 

constant 
values.

Unknown 
vector.

Ax + Constant
Now, nonlinear function f has been 
approximated by a linear function like; 

.

To the end, we can say that;

whether the Equilibrium, x=x* , of                        can be evaluated by eigen
values of;

( )&x f x=

( ) ( )
( ) ( )

( ) ( )

*xx

*xx

*

xx

xx

x
xfxf

=

=


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Thus, 

if all eigen values of Jacobi Matrix are negative, the equilibrium 
x=x* is stable  sink point.

if all eigen values of Jacobi Matrix are positive, the equilibrium 
x=x* is unstable source point.

If both negative and positive values are co-exist, the equilibrium 
x=x* is unstable saddle point.

Application; Analytical approach concerning 
equilibrium (steady-state) for Nonlinear systems

2-player 2-strategy game (2 by 2 game)

Class Dilemma? GID RAD
Prisoner’s Dilemma; PD Yes Yes Yes
Chicken (Snow Drift; Hawk-Dove) Yes Yes No
Stag Hunt; SH Yes No Yes
Trivial No No No
Basic Assumption

- Infinite population.

- One-shot game; well-mixed situation (with 
neither social viscosity nor assortment 
among agents).
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Cooperation
（C）

Defection
（D）

Cooperation
（C）

R，R S，T

Defection
（D）

T，S P，P

Agent1

Agent2

R；Reward，T；Temptation，S；Sucker，P；Punishment

Prisoner’s Dilemma

Agent1 Agent2

Cooperation
（C）

Defection
（D）

Cooperation
（C）

5, 5 1, 7

Defection
（D）

7, 1 3, 3

Agent1

Agent2

R；Reward，T；Temptation
S；Sucker，P；Punishment

C D
C R, R S, T
D T, S P, P

2R（=8）>T+S（=6）>2P（=4）

Gamble-Intending Dilemma (GID); Dg=T-R=7-5>0

Risk-Averting Dilemma (RAD);                   Dr=P-S=3-1>0

Equal Pareto Optimum

Nash Equilibrium

Prisoner’s Dilemma

Agent1 Agent2
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Cooperation
（C）

Defection
（D）

Cooperation
（C）

5 1

Defection
（D）

7 3

Agent1

Agent2

R；Reward，T；Temptation
S；Sucker，P；Punishment

C D
C R S
D T P

2R（=8）>T+S（=6）>2P（=4）

Prisoner’s Dilemma

Agent1 Agent2

Gamble-Intending Dilemma (GID); Dg=T-R=7-5>0

Risk-Averting Dilemma (RAD);                   Dr=P-S=3-1>0

Equal Pareto Optimum

Nash Equilibrium

Player1

Player2

P RS T

Prisoner’s Dilemma

Pareto Optimum

Most preferable 
for Player 1

Worst preferable 
for Player 1

Pareto Inverse-
Optimum

Equal Pareto Optimum

Equal Pareto 
Inverse-Optimum

S < P < R < T

Dr > 0

Dg > 0
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Chicken／ Hawk–Dove Game (Maynard Smith (1982))／ Snowdrift Game

Player1

Player2

SP R T
P < S < R < T

Dr < 0
Dg > 0

Pareto Optimum

Most preferable 
for Player 1

Equal Pareto Optimum

Worst

Cooperation
（C）

Defection
（D）

Cooperation
（C）

5 3

Defection
（D）

7 1

Agent1

Agent2

R；Reward，T；Temptation
S；Sucker，P；Punishment

C D
C R S
D T P

2R（=8）>T+S（=6）>2P（=4）

Chicken

Agent1 Agent2

Gamble-Intending Dilemma (GID); Dg=T-R=7-5>0
Risk-Averting Dilemma (RAD);                   Dr=P-S=3-1<0

Equal Pareto Optimum
Nash Equilibrium

Nash Equilibrium Worst
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Stag Hunt／ Inspired by Jean-Jacques Rousseau; “Discours sur l'origine 
et les fondements de l'inégalité parmi les hommes” (Chapter 2)

Player1

Player2

S P RT
S < P < T < R

Dg < 0

Dr > 0 Best 

Worst preferable 
for Player 1

Pareto Inverse-
Optimum

Equal Pareto 
Inverse-Optimum

Cooperation
（C）

Defection
（D）

Cooperation
（C）

7 1

Defection
（D）

5 3

Agent1

Agent2

R；Reward，T；Temptation
S；Sucker，P；Punishment

C D
C R S
D T P

Stag Hunt

Agent1 Agent2

Gamble-Intending Dilemma (GID); Dg=T-R=5-7<0
Risk-Averting Dilemma (RAD);                   Dr=P-S=3-1>0

Best=Equal Pareto Optimum

Nash Equilibrium

Nash Equilibrium
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Trivial Dilemma Free game

Player1

Player2

SP RT
P < S < T < R

Dg < 0
Dr < 0

Best 

Worst

Cooperation
（C）

Defection
（D）

Cooperation
（C）

7 3

Defection
（D）

5 1

Agent1

Agent2

R；Reward，T；Temptation
S；Sucker，P；Punishment

C D
C R S
D T P

Trivial

Agent1 Agent2

Gamble-Intending Dilemma (GID); Dg=T-R=5-7<0
Risk-Averting Dilemma (RAD);                   Dr=P-S=1-3<0

Best=Equal Pareto Optimum

Nash Equilibrium
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Evolutionary game C D
C 1 -Dr

D 1+Dg 0

Dg； GID
Dr； RAD

Cooperation

A focal player plays a game with 
a randomly selected opponent.
Strategy (whether C or D) 
adaptation based on obtained 
payoff is considered.

1．

2．

In case if PD
（Dg>0, Dr>0）

Time step

C
oo

pe
ra

tio
n

fra
ct

io
n

2 by 2 game considered time evolution

You never see emerging cooperation, unless some additional 
mechanism for social viscosity is implemented.

-Dr1+Dg

1

0 1

0

-Dr

-Dr
1+Dg

1+Dg

1
-Dr

0

0

Defection

Battle field

・Kin selection
・Direct reciprocity
・Indirect Reciprocity
・Network Reciprocity
・Group selection

What is Social Viscosity? A restricted relation among 
agents

Lessing Anonymity

Emerging cooperation

Well-mixed situation A Game on a network
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Let us back to the Basic Assumption again;
- Infinite population.
- One-shot game; well-mixed situation (with neither social 

viscosity nor assortment among agents).

( )10=2eT

( )01=1eT
Let us describe Cooperation and defection strategies by;

; C

; D

M≡







PT
SR

Also, let us define game structure, i.e. payoff matrix as below;

( )21 ssT =s

Further, let us define strategy frequency among agents at a 
certain time step as below;

Fraction of  C      D

Let us think a simple example. When a focal player who offers D, 
how much of payoff expectation she can get in case of paying with 
another D player as her game opponent?  

By simplex constraint;                            .12 1 ss −=

( ) P
PT
SP

 =















⋅

1
0

10

By analogy, payoff expectations of both a C and D players 
respectively paying with average players at this time step are;

s Me1 ⋅T

s Me ⋅2
T
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Let us consider the following system dynamics, called 
Replicator Dynamics, which is thought to be a good model 
for describing the reproduction process of population dynamics for 
animal species. 

s Mss Mei ⋅−⋅= TT

i

i
s
s&

Changing rate of 
strategy i; C when i=1 

& D when i=2

Payoff expectations of a 
strategy i player paying 
with an average player 

at this time step

Payoff expectations of 
an average player 

paying with an average 
player at this time step

Implying benefit brought to a player who 
adopts strategy i.

s Mss Mei ⋅−⋅= TT

i

i
s
s&

Replicator Dynamics:                                            has three equilibriums.

Two obvious equilibriums are;

(1,0) ;  A state absorbed by C where all players offer C (C Dominate phase) . 

(0,1) ;  A state absorbed by D where all players offer D (D Dominate phase) . 

The third one is; 









+−−
−

+−−
−

RSTP
TR

RSTP
SP

(Polymorphic phase).

A question is what dynamics would be if analytic approach is applied to the 
Replicator Dynamics, which is a (nonlinear) cubic equation for s1 or s2.
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s Mss Mei ⋅−⋅= TT

i

i
s
s&

Let us describe Replicator Dynamics explicitly by substituting i=1 and 2.               

( ) ( )[ ]
( ) ( )[ ]




⋅⋅⋅−−⋅−−=
⋅⋅⋅−−⋅−=

⇔
21212

21211

sssSPsTRs
sssSPsTRs

&

&

( )2111 , ssfs ≡& ( )2122 , ssfs ≡&

12 1 ss −=
When defining                                      and          as well as 
reminding Simplex constraint;                               , we know;                                  

21 ff −=

( ) ( )
( ) ( )

( ) ( )

*xx

*xx

*

xx

xx

x
xfxf

=

=





















∂
∂

∂
∂

∂
∂

∂
∂

=
∂

∂
=′

n

nn

n

x
f

x
f

x
f

x
f

L

MOM

L

1

1

1

1

Again, Our current target is to evaluate Eigen values of Jacobi Matrix at 
respective three equilibrium; s*.                                             









+−−
−

+−−
−

RSTP
TR

RSTP
SP(1,0)   (0,1)

( )

( ) PSsPTSR       

sPTSR
s
f

s
f

−++−−+

−++−=
∂
∂

−=
∂
∂

1

2
1

1

2

1

1

222

3

( )

( ) PSsPTSR-       

sPTSR
s
f

s
f

+−+−−

−++−−=
∂
∂

−=
∂
∂

1

2
1

2

2

2

1

222

3



















∂
∂

−
∂
∂

−

∂
∂

∂
∂

=



















∂
∂

∂
∂

∂
∂

∂
∂

=

2

1

1

1
2

1

1

1

2

2

1

2
2

1

1

1

s
f

s
f

s
f

s
f

s
f

s
f

s
f

s
f

JWe know two Eaigen values of                                                      are;  

0 and                               (its eiven vector is (1,-1)) .                          
2

1

1

1
s
f

s
f

∂
∂

−
∂
∂
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Thus, what we should currently do is evaluate sings of

at respective three equilibrium; s*.                                             2

1

1

1

s
f

s
f

∂
∂

−
∂
∂

≡λ

( )

( ) ( )PSsPTSR     

sPTSR
s
f

s
f

−++−−+

−++−=
∂
∂

−
∂
∂

=

2224

6

1

2
1

2

1

1

1λ

( )0,1* =s TR 22 +−=λ(1) At                      ;                                   .

Thus, for                      , it must be                     .0<λ 0<=− gDRT
(2) At                      ;                                   .

Thus, for                      , it must be                     .

0<λ

( )1,0* =s PS 22 −=λ
0<λ

(3) At                                                          ;                                           .

Thus, for                      , it must be;

.     









+−−
−

+−−
−

=
RSTP

TR
RSTP

SPs*
( )( )

PTSR
SPTR

+−−
−−

= 2λ

0>=− rDSP

00 >=−∧<=−⇔<∧< gr DRTDSPTRSP

Source or sink at Equilibrium; s* Game 

class 

Trait Nash Equilibrium Sing 

of 

GID; 

Dg 

Sing 

of 

RSD; 

Dr 

(1,0) (0,1) 












−
−

− gr

g

rg

r

DD
D

DD
D

 

PD D-dominate (0,1) + + Source sink Saddle 

Chicken Polymorphic 












−
−

− gr

g

rg

r

DD
D

DD
D

+ - Source Source Sink 

Stag Hunt Bi-stable (0,1) or (1,0) - + Sink Sink Source 

Trivial C-Dominate (1,0) - - Sink Source Saddle 

 

Summing up all so far, we obtain;                               

Where                                               










−

−

−
=








+−−
−

+−−
−

=
gr

g

rg

r

DD
D

DD
D

RSTP
TR

RSTP
SPs*
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Phase diagram of 2 by 2 games
Dg 

Dr 

Chicken                             PD

Trivial                            Stag Hunt

Prisoner’s Dilemma, PD
Dg 

Dr 

Chicken                             PD

Trivial                            Stag Hunt

s
0 1                         

Source      

Sink 

All agents are 
absorbed by D.                                    
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Chicken
Dg 

Dr 

Chicken                             PD

Trivial                            Stag Hunt

s
0 1                  

Source      

Sink 

All agents are 
absorbed by Internal 
Equilibrium.                                    

D-dominate

Source      

Stag Hunt
Dg 

Dr 

Chicken                             PD

Trivial                            Stag Hunt

s
0 1                         

Sink 

Depending on initial 
distribution, some 
agents are absorbed 
by D and other are 
absorbed by C.                                    

D-dominate

Source      

Sink 
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Trivial, dilemma free game
Dg 

Dr 

Chicken                             PD

Trivial                            Stag Hunt

s
0 1                  

Source      

Sink 

All agents are 
absorbed by C.                     Polymorphic

Bi-stable

Phase diagram of 2 by 2 games
Dg 

Dr 

Chicken                             PD

Trivial                            Stag Hunt

Polymorphic                D-dominate

C-dominate                       Bi-stable

FINALE
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Backgrounds & Purpose

Most previous studies
Entirely

cooperation
Entirely

defection

Agents can offer either
cooperation (C) or defection (D) 

The real world

Actual options might be 
continuous rather than discrete 

Entirely
cooperation

Entirely
defection

Discrete strategy Continuous or mixed strategy

One crucial question is whether  there is a considerable 
difference in game equilibria between the continuous or 
mixed strategies and those of discrete strategies?

Continuous strategy Mixed strategy

1.0

1.0 0

0

C D

C 1,   1 -Dr,  1+Dg

D 1+Dg,  -Dr 0,   0

Agent i
Agent j

1. Strategy value:

2. Payoff function
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Results C D
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Burgers Equation
ut=2uux+uxx

Diffusion Equation
ft=fxx

Cole-Hopf (C-H) transform

u=(log f)x

Discrete Burgers 
Equation

Ultra-discrete 
Burgers Equation

Discrete Diffusion 
Equation

Ultra-discrete 
Diffusion Equation

Discrete C-H 
inverse-transform

Ultradiscrete C-H 
inverse-transform

Kinetic Model; 
NS-like Equations

discretization in time & space

Ultra-discretization

Euler – Lagrange transform

Optimum Velocity 
Model

Car Following 
Model

Wolfram’s CA rule-184 

Asymmetric Simple 
Exclusion Process (ASEP)

Zero Range 
Process (ZRP)

Stochastic Optimal Velocity (SOV)

Stochastic expression

Superposing expression

discretization in time & space

Cellular Automaton 
(CA) Model
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Microscopic Model; Lagrangian-scope

Macroscopic Model; Eulerian-scope

Real Traffic flow
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Spatiotemporal diagram #1

distance

tim
e 

st
ep

Free flow phase

(Tian,J.-f.- et al, 2009)

Spatiotemporal diagram #2

tim
e 

st
ep

distance

When a jam cluster is emerging up

(Tian,J.-f.- et al, 2009)
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Kerner’s Three Phases Theory
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Tian,J.-f.- et al, 2009
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F: free flow
S: synchronized flow
J: wide moving jam
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PurposePurpose
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2 x 2 game

Environment
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defecting). 

This seems Chicken is a good metaphor for 
“resource-competing problems”

N-Chicken = Tragedy of Commons (Hardin, 1968)

Pareto Optimum
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Worst 
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For PD; T>R >P >S
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Decision-making process   
on situation indivisuals exist. 

Game theory

Simulation analysis by modeling

•Macroscopic model
Kinetic gas theory, fluid dynamical model

•Microscopic model
Dynamical approach by self-driven   
multiparticle system

Trafic flow
BackgourndBackgournd

DecisionDecision--making making 
process has not process has not 

been considered.been considered.

Discretization of time and space 

Discretization of property 

Rules for dynamics

Effect of excluding volume 

The cellular automaton (CA) modelThe cellular automaton (CA) model
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S-NFS model can reproduce 
realistically plausible traffic flows.

SS--NFS modelNFS model

Inertia
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Acceleration and 
Deceleration

v: velocity

a: parameter

∆x: headway

V: optimal velocity 
functionSOV model can’t reproduce 

dynamics of traffic flow in detail.

Velocity in the SOV modelVelocity in the SOV model

Yamauchi et al. ; 
Phys. Rev. E 79, 
#036104 (2009).

Stochastic Optimal Velocity Stochastic Optimal Velocity 
(SOV) model(SOV) model
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Fundamental diagram of 
S-NFS model with open 

boundary condition 
(p=0.99,q=0.99,r=0.99)

Fundamental diagram of 
real traffic flow

Y.Sugiyama; Nagare 22, 95 
(2003)
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C’s are majority
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MetaMeta--stable phase stable phase ((α=1.0, β=1.0)

250 300 (bottleneck) location
C(Cooperate) Strategy D(Defect) Strategy

Motion of cars at a bottleneckMotion of cars at a bottleneck
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ConclusionConclusion

・・FreeFree--flowflow and and JamJam phase have            phase have            
TrivialTrivial game structure.game structure.

・・MetaMeta--stablestable andand HighHigh--densitydensity phase have phase have 
Prisoner’s Dilemma game structure.

・・Social dilemma can be diluted by a Social dilemma can be diluted by a 
rigorous traffic rule, in which last minute rigorous traffic rule, in which last minute 
interruption is never allowed by well interruption is never allowed by well 
mannered drivers.mannered drivers.
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brake brake

brake

brake

Detective strategy

Cooperative strategybrake

Occurring jam
= safety

= danger

Future WorkFuture Work
It might be interesting to examine the question of whether frequent lane 
changes in a 1D-like homogenous road (without any obvious bottlenecks 
such as a lane-closing, uphill travel, or a tunnel) may also cause another 
social dilemma. We assume that changing lanes itself could cause a 
dilemma in a traffic flow. 


